
At some cases, you might need to extend a vlan over l3 links, and for some reason while;

you don't want to spend money on devices
change routing/interface configurations on firewalls.
No vxlan capable devices in use (i know, there vpls, l2tpv3 and some other solutions but
hey it's linux so why not ?)

Then here is your solution, with a simple dnat entry you can extend your vlan.

In my case, customer was in need to backup their vm's using VMWare's replication to their DR
center and whenever they needed, they do like to use the DR as Active data center. And changing
configs on a disaster situation was the least they want to deal with.

Of course this is only a half of a complete DR solution may less, but restoring a services directly
from DR was the requirement as i've been told.

Requirements:

Extending l2 networks using
wireguard & gretap

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667995297149.png

2 ubuntu 18.04 machines on both data centers
for each ubuntu vm 1 interface for l3 tunnel as underlay and one interface to use as tap to
extend vlan
2 cores were quite powerfull for 200 mbits of througput
1 gb ram per machine
Allowing forged ethernet frames on both tap ports
1 cup of coffee and a slice of good chestnut cake

Some caveats ;

good cpu = good throughput, and the opposite
do not loop !
be carefull with the Xstp or you might have a lame root bridge
My config was interface per vlan, so somone might have a trunk solution.
No HA solution, those machines needs to be monitored closely, use observium and it's
agent

To install wireguard vpn on ubuntu 18.04

After installation you'll need to restart operating system and check for installed module, output
should be as shown below.

Wireguard need public and private keys to operate, there is a tool called wg which can generate
them as shown below

install wireguard

#sudo apt update

#sudo apt-get install libmnl-dev libelf-dev linux-headers-$(uname -r) build-essential pkg-

config

#sudo apt install wireguard

#lsmod| grep wireguard

udp_tunnel	16384 1 wireguard

ip6_udp_tunnel 16384 1 wireguard

generete keys

#wg genkey | sudo tee /etc/wireguard/privatekey | wg pubkey | sudo tee

/etc/wireguard/publickey

You can find the keys at /etc/wireguard

You'll need to create a file called wireguard0.conf at /etc/wireguard

Contents of the file should be like this ;

For initiator:

For responder:

to start the tunnel

to check the status

create wireguard0.conf

[interface]

private_key= the_private_key_you_generated

address= 10.10.10.1/24 #ip address of the wireguard0

[peer]

PublicKey = #he public key that you generated on the responder host

AllowedIPs = 10.10.10.0/24 #and the other networks that you'd like route through

EndPoint = internet_address:port

PersistenKeepAlive = 15 #seconds

[interface]

private_key= the_private_key_you_generated

address= 10.10.10.2/24 #ip address of the wireguard0

listenPort = 4900

[peer]

PublicKey = #he public key that you generated on the initiator host

AllowedIPs = 10.10.10.0/24 #nd the other networks that you'd like route through

PersistenKeepAlive = 15 #seconds

initiate tunnel

wg-quick up wireguard0

To install bridge utils

to enable

to keep loading on boot

To enable routing on the fly

to make it permanent, add lines below to /etc/sysctl.conf ;

wg show wireguard0

interface: wireguard0

 public key: +/1R3JqLKlszbaGUSBtckoxNOMuSvLYKUCl03ShoFw8=

 private key: (hidden)

 listening port: 4900

peer: 2f/RmbuvKtR/L2ZFlQBHsVGkTXkA6d1pJO1ay5EjwSQ=

 endpoint: 172.21.23.111:49792

 allowed ips: 10.10.10.0/24, 192.168.5.0/24

 latest handshake: 1 minute, 31 seconds ago

 transfer: 19.10 MiB received, 11.95 MiB sent

install bridge-utils

#apt install bridge-utils

enable br_netfilter

#modprobe br_netfilter

#sudo sh -c 'echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf'

#cat net.bridge.bridge-nf-call-ip6tables = 1 >> /etc/sysctl.d/bridge.conf

enable routing

sysctl -w net.ipv4.ip_forward=1

When you are going to use ip tunnel for underlay and gretap for overlay, there will be some serious
mss/mtu size problems to fix that, we need the br_netfilter module that we installed before and a
special chain to limit the mss size to the max mtu of interface

We specially use -I to put it at the top of the forward chain.

For the initiator:

For responder

Now you will add the interfaces to bridge

add interfaces to bridge br0

Uncomment the next line to enable packet forwarding for IPv4

net.ipv4.ip_forward=1

fix mss on exit interface

#iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu

configure gretap interface

ip link add gretap0 type gretap local 172.16.5.2 remote 192.168.5.2

ip link add gretap0 type gretap local 192.168.5.2 remote 172.16.5.2

configure bridge

#brctl addbr br0

#brctl addif br0 ens4

#brctl addif br0 gretap0

Bring everything up

do pings i've checked that dhcp is working,

what needs to be done are ;

Multicast packets
the situation about protocols like vrrp and hsrp
The effect of broadcast packets to cpu

#wp-quick up wireguard0

#ip link set up dev br0

#ip link set up dev gretap0

#ip link et up dev ens4

tests

Revision #1
Created 9 November 2022 12:01:23 by Mesut Bayrak
Updated 9 November 2022 12:02:02 by Mesut Bayrak

