
Delay and loss tests using netem on a healthy network
Extending l2 networks using wireguard & gretap
Generating 1:1 ipfix from 10g pipeline - Getting the data - Part 1

Network

We needed a lab environment that can provide a "break on purpose network" to developers to test
their code on it. You can add;

delay
packet loss
jitter
duplicate packets
unordered flows

to a connection on the fly. To do it we need "netem" modules help.

Delay and loss tests using
netem on a healthy network

Purpose of this document

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668154502209.png

Since kernel 2.6 netem is included in iproute2 package, basically all modern distro's has it now.
You can find a documentation on Netem

i am going to explain the required steps here ;

create a master traffic class on interface ens8

 sudo tc qdisc add dev ens8 root handle 1: prio

Attach a subclass to tc 1: as 3

 sudo tc qdisc add dev ens8 parent 1:3 handle 30: netem delay 1000ms
 sudo tc filter add dev ens8 protocol ip parent 1:0 prio 3 u32 match ip dst 51.195.19.172 flowid 1:3

NETEM

https://docs.mikronet.tech/attachments/8

At some cases, you might need to extend a vlan over l3 links, and for some reason while;

you don't want to spend money on devices
change routing/interface configurations on firewalls.
No vxlan capable devices in use (i know, there vpls, l2tpv3 and some other solutions but
hey it's linux so why not ?)

Then here is your solution, with a simple dnat entry you can extend your vlan.

In my case, customer was in need to backup their vm's using VMWare's replication to their DR
center and whenever they needed, they do like to use the DR as Active data center. And changing
configs on a disaster situation was the least they want to deal with.

Of course this is only a half of a complete DR solution may less, but restoring a services directly
from DR was the requirement as i've been told.

Extending l2 networks using
wireguard & gretap

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667995297149.png

Requirements:

2 ubuntu 18.04 machines on both data centers
for each ubuntu vm 1 interface for l3 tunnel as underlay and one interface to use as tap to
extend vlan
2 cores were quite powerfull for 200 mbits of througput
1 gb ram per machine
Allowing forged ethernet frames on both tap ports
1 cup of coffee and a slice of good chestnut cake

Some caveats ;

good cpu = good throughput, and the opposite
do not loop !
be carefull with the Xstp or you might have a lame root bridge
My config was interface per vlan, so somone might have a trunk solution.
No HA solution, those machines needs to be monitored closely, use observium and it's
agent

To install wireguard vpn on ubuntu 18.04

After installation you'll need to restart operating system and check for installed module, output
should be as shown below.

Wireguard need public and private keys to operate, there is a tool called wg which can generate
them as shown below

install wireguard

#sudo apt update
#sudo apt-get install libmnl-dev libelf-dev linux-headers-$(uname -r) build-essential pkg-config
#sudo apt install wireguard

#lsmod| grep wireguard
udp_tunnel	16384 1 wireguard
ip6_udp_tunnel 16384 1 wireguard

generete keys

#wg genkey | sudo tee /etc/wireguard/privatekey | wg pubkey | sudo tee /etc/wireguard/publickey

You can find the keys at /etc/wireguard

You'll need to create a file called wireguard0.conf at /etc/wireguard

Contents of the file should be like this ;

For initiator:

For responder:

to start the tunnel

to check the status

create wireguard0.conf

[interface]
private_key= the_private_key_you_generated
address= 10.10.10.1/24 #ip address of the wireguard0

[peer]
PublicKey = #he public key that you generated on the responder host
AllowedIPs = 10.10.10.0/24 #and the other networks that you'd like route through
EndPoint = internet_address:port
PersistenKeepAlive = 15 #seconds

[interface]
private_key= the_private_key_you_generated
address= 10.10.10.2/24 #ip address of the wireguard0
listenPort = 4900

[peer]
PublicKey = #he public key that you generated on the initiator host
AllowedIPs = 10.10.10.0/24 #nd the other networks that you'd like route through
PersistenKeepAlive = 15 #seconds

initiate tunnel

wg-quick up wireguard0

To install bridge utils

to enable

to keep loading on boot

To enable routing on the fly

wg show wireguard0
interface: wireguard0
 public key: +/1R3JqLKlszbaGUSBtckoxNOMuSvLYKUCl03ShoFw8=
 private key: (hidden)
 listening port: 4900

peer: 2f/RmbuvKtR/L2ZFlQBHsVGkTXkA6d1pJO1ay5EjwSQ=
 endpoint: 172.21.23.111:49792
 allowed ips: 10.10.10.0/24, 192.168.5.0/24
 latest handshake: 1 minute, 31 seconds ago
 transfer: 19.10 MiB received, 11.95 MiB sent

install bridge-utils

#apt install bridge-utils

enable br_netfilter

#modprobe br_netfilter

#sudo sh -c 'echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf'
#cat net.bridge.bridge-nf-call-ip6tables = 1 >> /etc/sysctl.d/bridge.conf

enable routing

sysctl -w net.ipv4.ip_forward=1

to make it permanent, add lines below to /etc/sysctl.conf ;

When you are going to use ip tunnel for underlay and gretap for overlay, there will be some serious
mss/mtu size problems to fix that, we need the br_netfilter module that we installed before and a
special chain to limit the mss size to the max mtu of interface

We specially use -I to put it at the top of the forward chain.

For the initiator:

For responder

Now you will add the interfaces to bridge

add interfaces to bridge br0

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

fix mss on exit interface

#iptables -I FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu

configure gretap interface

ip link add gretap0 type gretap local 172.16.5.2 remote 192.168.5.2

ip link add gretap0 type gretap local 192.168.5.2 remote 172.16.5.2

configure bridge

#brctl addbr br0

#brctl addif br0 ens4
#brctl addif br0 gretap0

do pings i've checked that dhcp is working,

what needs to be done are ;

Multicast packets
the situation about protocols like vrrp and hsrp
The effect of broadcast packets to cpu

Bring everything up
#wp-quick up wireguard0
#ip link set up dev br0
#ip link set up dev gretap0
#ip link et up dev ens4

tests

Goal : generate lossles ipfix flow's from distributed pipe to monitor application or network
performance, identify bootlenecks and generate alerts if possible.

Why this way ? : It was expensive to do it with proprietary solutions. Plus we needed to have a
flexible, open source option to work on. The closest solution cost was $1M

Challenges ;

We are going to do it using cpu, so lot's of flows require lots of processing power,
short flows create large ipfix messages than theirselves, any dns flow is is mostly 100
bytes long but a ipfix message for that flow costs us 1000 bytes
many packets traversing the kernel would create losses so we needed to bypass that

Generating 1:1 ipfix from
10g pipeline - Getting the
data - Part 1

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668681907236.png

we need to create custom dashboards, or create alerts.
deduplication

Plan :

get mirrors from devices
produce ipfix from mirrors
send ipfix data to elastiflow
design custom dashboards
design monitor and alerters

What happened along the way;

Obviously there will be lot's of storage requirement and cpu requirements how ever the
current write rate wasn't going to be deadly so we decided to go with using only one
server with many ssd drives. We lost the array drives because of a failure in array
controller
We were going to aggregate mirrors from fabric using a Mellanox switch by utilizing it's
bridge functions, the asic couldn't manage packet replication this step failed, we bought
additional cards and skipped aggregation layer.
The intel x810-CAQxx cards failed to go in Zero Copy mode, we needed to wait for 2
months for a new firmware from intel
The tool that we used created problems with intel cards firmware and kernel module. We
had to reflash them twice till we found a working state
The tool had a bug with combining mirrors so we waited for a bugfix.

Current status

We have a working setup, using this version of intel module

With this version of firmware

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668682201197.png
https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668682386638.png

You can find some performance outputs as shown below

Server's status

Current traffic rate

Current io rate

Disk config

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668612588900.png
https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668613449586.png
https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668613739988.png

What's Next:

Well, we started to deep dive into traffic and analyze, create widgets and all the necessary stuff to
have a Management dashboard. We saw some interesting stuff too which will need a lot of
troubleshooting and investigation.

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1668613881771.png

