
As you might know Python has a problem called as GIL which means global interpreter lock. This
lock prevents sharing variables between processes. Basically process creates another interpreted
processs which also means double the memory, and process power.

To overcome this problem, guys at python created a solution called Manager() not only you can
share data between processes, you can share data between computers, nice isn't it ?

Quoted from python3 documentation;

Server process managers are more flexible than using shared memory objects because they can be
made to support arbitrary object types. Also, a single manager can be shared by processes on
different computers over a network. They are, however, slower than using shared memory.

On my case, i needed to update a dictionary on one process and a flask api was going to serve
requests based on this dictionary

Sharing a dictionary
between processes on
python

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667996144804.png
https://docs.python.org/3/library/multiprocessing.html#managers

However there was a problem, when i needed to update nested dictionaries on process i saw that
dict was never updated, and look's like the Manager() class has a bug which doesn't update the
values on dictionaries. Quoting from python
"https://docs.python.org/3/library/multiprocessing.html#proxy-objects"

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667996501049.png
https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667996949668.png

I did use manager within a context manager, it was initiated like this ;

here is an example to update the manager() owned dictionary ;

the increase_details() function represents a stream to update the sample_array['detail'] by 1 on
every interval, how ever this wasn't happening and i couldn't find any legitimate solution to this.

What i did was to create a copy of the array, do the nested updates on new array and copy the
whole array back to manager. Like this;

class Flow():
 def __init__(self):
 print('init method called')
 self.sample_array = {}

 def __enter__(self):
 print('enter method called')
 self.sample_array['detail']=0
 return self
 def increase_detail(self,count):
 self.sample_array['detail'] += count

 def __exit__(self, exc_type, exc_val, exc_tb):
 print("exited")
 print(self.sample_array)
 # def __exit__(self, exc_type, exc_value, exc_traceback):
 # print('exit method called')

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667997227605.png

Lame but solved my problem, i'd like to know possible solutions to this problem, if you have one
mail me mailto mesut

 def increase_detail(self,count):
 	# self.sample_array['detail'] += count
 	_sa_array= self.sample_array
 	_sa_array['detail'] += count
 	self.sample_array=_sa_array

Revision #3
Created 9 November 2022 12:13:49 by Mesut Bayrak
Updated 9 November 2022 12:46:20 by Mesut Bayrak

mailto://mesut@netdev.com.tr

