
I have or had problems while coding python, you might find some fixes or some tricks

Permissions and working with raw sockets using pycharm
Sharing a dictionary between processes on python
Connecting to MS SQL Server with python

Mesut's Python
problems and
solutions

The problem is that raw_sockets require root privileges to initiate. This is not good and creates a lot
of fuzz when you do runs on pycharm, you need to go terminal execute the code using sudo and
stopping it creates a lot of additional fuzz if you are using threads or processes libraries. And this
solution is only for developers that uses linux environments

To overcome this problem;

You can setcap the interpreter but you must be carefull because this is dangerous. After this point
all the code you run with this feture will be commited with root privileges so if you are doing packet
generation or some crazy stuff you might create network problems. Watch it !!!

Or run with sudo in pycharm, use the script below as your interpreter.

Permissions and working
with raw sockets using
pycharm

sudo setcap 'CAP_NET_RAW+eip CAP_NET_ADMIN+eip' /usr/bin/python3.10

https://books.netdev.com.tr/uploads/images/gallery/2022-11/resim.png

There is a catch, you should also require to be a nopassword user in your sudoers config.

1. Get your user name in to sudoers

 sudo echo "your_user_name ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/your_user_name

2. Change your pycharm config to use the python-sudo
Copy this and don't forget to change the "home/rammses/PycharmProjects/mikrohelper"
section before creating the python-sudo.sh file

put it into venv/bin folder
name it python-sudo.sh
set it executable chmod +x ./python-sudo.sh
set your project interpreter as shown below

 #!/bin/bash
 sudo /home/rammses/PycharmProjects/mikrohelper/venv/bin/python "$@"

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667994586233.png

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667994602515.png

As you might know Python has a problem called as GIL which means global interpreter lock. This
lock prevents sharing variables between processes. Basically process creates another interpreted
processs which also means double the memory, and process power.

To overcome this problem, guys at python created a solution called Manager() not only you can
share data between processes, you can share data between computers, nice isn't it ?

Quoted from python3 documentation;

Server process managers are more flexible than using shared memory objects because they can be
made to support arbitrary object types. Also, a single manager can be shared by processes on
different computers over a network. They are, however, slower than using shared memory.

On my case, i needed to update a dictionary on one process and a flask api was going to serve
requests based on this dictionary

Sharing a dictionary
between processes on
python

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667996144804.png
https://docs.python.org/3/library/multiprocessing.html#managers

However there was a problem, when i needed to update nested dictionaries on process i saw that
dict was never updated, and look's like the Manager() class has a bug which doesn't update the
values on dictionaries. Quoting from python
"https://docs.python.org/3/library/multiprocessing.html#proxy-objects"

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667996501049.png
https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667996949668.png

I did use manager within a context manager, it was initiated like this ;

here is an example to update the manager() owned dictionary ;

the increase_details() function represents a stream to update the sample_array['detail'] by 1 on
every interval, how ever this wasn't happening and i couldn't find any legitimate solution to this.

What i did was to create a copy of the array, do the nested updates on new array and copy the
whole array back to manager. Like this;

class Flow():
 def __init__(self):
 print('init method called')
 self.sample_array = {}

 def __enter__(self):
 print('enter method called')
 self.sample_array['detail']=0
 return self
 def increase_detail(self,count):
 self.sample_array['detail'] += count

 def __exit__(self, exc_type, exc_val, exc_tb):
 print("exited")
 print(self.sample_array)
 # def __exit__(self, exc_type, exc_value, exc_traceback):
 # print('exit method called')

https://books.netdev.com.tr/uploads/images/gallery/2022-11/image-1667997227605.png

Lame but solved my problem, i'd like to know possible solutions to this problem, if you have one
mail me mailto mesut

 def increase_detail(self,count):
 	# self.sample_array['detail'] += count
 	_sa_array= self.sample_array
 	_sa_array['detail'] += count
 	self.sample_array=_sa_array

mailto://mesut@netdev.com.tr

Sql server connection cant find the sql engine

The last line looks for a sql server engine named SQL SERVER however we don't use it anymore.

Connecting to MS SQL
Server with python

The problem

Collecting pypyodbc
Using cached
https://files.pythonhosted.org/packages/62/94/a5bb72a83366c3249d60c7c465b25cb4252b6be4cc2b13eef048e8
e73085/pypyodbc-1.3.6.tar.gz
Requirement already satisfied: setuptools in /usr/lib/python3/dist-packages (from pypyodbc)
Building wheels for collected packages: pypyodbc
Running setup.py bdist_wheel for pypyodbc ... done
Stored in directory: /root/.cache/pip/wheels/bd/68/0f/b23f408ec9ad90e883abc69ae16bf87ac822259de735c9f77c
Successfully built pypyodbc
Installing collected packages: pypyodbc
Successfully installed pypyodbc-1.3.6
root@miharbines:/home/miharbines/Test# python3 dbtest1.py
Traceback (most recent call last):

https://books.netdev.com.tr/uploads/images/gallery/2023-01/image-1674163403049.png

İnstall MS SQL version 17 db engine from ms repos

From

to

File "dbtest1.py", line 3, in <module>
connection = pypyodbc.connect('Driver={SQL
Server};Server=x.y.z.d;DATABASE=trade;UID=sa;PWD=x.x.x.x.x.x')
File "/usr/local/lib/python3.6/dist-packages/pypyodbc.py", line 2454, in _init_
self.connect(connectString, autocommit, ansi, timeout, unicode_results, readonly)
File "/usr/local/lib/python3.6/dist-packages/pypyodbc.py", line 2507, in connect
check_success(self, ret)
File "/usr/local/lib/python3.6/dist-packages/pypyodbc.py", line 1009, in check_success
ctrl_err(SQL_HANDLE_DBC, ODBC_obj.dbc_h, ret, ODBC_obj.ansi)
File "/usr/local/lib/python3.6/dist-packages/pypyodbc.py", line 983, in ctrl_err
raise OperationalError(state,err_text)
pypyodbc.OperationalError: ('01000', "[01000] [unixODBC][Driver Manager]Can't open lib 'SQL Server' : file not
found")

Solution

sudo -i
curl https://packages.microsoft.com/keys/microsoft.asc | apt-key add -
curl https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/prod.list > /etc/apt/sources.list.d/mssql-
release.list
sudo apt update
sudo ACCEPT_EULA=Y apt-get install -y msodbcsql17
sudo apt-get install -y unixodbc-dev

Switch the driver

conn = pyodbc.connect('DRIVER={SQL
Server};SERVER=server_name;DATABASE=database_name;UID=user;PWD=password')

My friend was using MS SQL 2014 default install and TLS 1.0 was the only option from produced by
MS SQL 2014, we had to install the latest service packs so it can support newer TLS version such as
tls 1.2 or 1.3

here is the link for turkish one

After patching the server 2014, the connection got established and code worked as expected.

conn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL
Server};SERVER=server_name;DATABASE=database_name;UID=user;PWD=password')

Output

2nd Problem

https://books.netdev.com.tr/uploads/images/gallery/2023-01/image-1674163359177.png
https://support.microsoft.com/tr-tr/topic/kb3135244-microsoft-sql-server-i%C3%A7in-tls-1-2-deste%C4%9Fi-e4472ef8-90a9-13c1-e4d8-44aad198cdbe

